
A Generic Dynamic Programming Matlab Function

Olle Sundström and Lino Guzzella

Abstract— This paper introduces a generic dynamic pro-
gramming function for Matlab. This function solves discrete-
time optimal-control problems using Bellman’s dynamic pro-
gramming algorithm. The function is implemented such that the
user only needs to provide the objective function and the model
equations. The function includes several options for solving
optimal-control problems. The model equations can include
several state variables and input variables. Furthermore, the
model equations can be time-variant and include time-variant
state and input constraints. The syntax of the function is
explained using two examples. The first is the well-known
Lotka-Volterra fishery problem and the second is a parallel
hybrid-electric vehicle optimization problem.

I. INTRODUCTION

When developing causal suboptimal controllers it is an

advantage if the optimal controller is known, even if this con-

troller is not causal. In many cases, such optimal controllers

can be found using the deterministic dynamic programming

(DP) algorithm introduced in [1]. Of course, this optimal

controller can be found only if all future disturbance and

reference inputs are known. In this sense, this solution is

not causal. Nevertheless, this optimal solution is very useful,

because it can be used as a benchmark to which all other

causal controllers can be compared to.

Many excellent text books have been published on the

subject of DP theory, among them [2] and [3]. An overview

of the history and development of dynamic programming

is shown in [4]. Interested readers are referred to these

references for a detailed discussion of the basic ideas of

DP. When implementing the deterministic DP algorithm on

a computer there are many numerical issues that arise that

have, so far, not yet received sufficient attention. Also, since

the computational complexity of every DP algorithm is ex-

ponential in the number of states and inputs, special attention

must be given to minimizing the overall computational cost.

The implementation of suitable numerical algorithms that

efficiently solve a given DP problem is, therefore, a nontrivial

part of a design process.

This paper presents a Matlab function that efficiently

solves deterministic DP problems. The focus lies on the opti-

mal control of non-linear, time-variant, constrained, discrete-

time approximations of continuous-time dynamic models.

One area where such DP tools have been used successfully is

the energy management problem in hybrid-electric vehicles

[5], [6].

O. Sundström, Department of Mechanical and Process Engineering ETH
Zurich, 8092 Zurich, Switzerland and Empa, Swiss Federal Laboratories
for Materials Testing and Research, 8600 Dübendorf, Switzerland, sund-
stroem@imrt.mavt.ethz.ch

L. Guzzella, Department of Mechanical and Process Engineering ETH
Zurich, 8092 Zurich, Switzerland, guzzella@imrt.mavt.ethz.ch

The class of optimal control problems that can be solved

using the proposed Matlab function can be written as:

min
u(t)

J(u(t)) (1)

s.t.

ẋ(t) = F (x(t), u(t), t) (2)

x(0) = x0 (3)

x(tf) ∈ [xf,min, xf,max] (4)

x(t) ∈ X(t) ⊂R
n (5)

u(t) ∈ U(t) ⊂R
m (6)

where

J(u(t)) = G(x(tf)) + ∫ tf

0

H(x(t), u(t), t)dt (7)

is the cost functional. The important characteristics of the

considered optimal-control problems are the time-variant

constraints on the input and the state, the constrained final

state, and the time-variant model equation. These problems

are in general difficult to solve. However, these problems

can be solved using Bellman’s DP [1], provided that the

conditions stated in the next section are satisfied.

II. DYNAMIC PROGRAMMING ALGORITHM

This section gives a brief overview of the deterministic DP

algorithm as it is implemented in the dpm function. Since

DP is used here to solve a continuous-time control problem,

the continuous-time model (2) must be discretized in time

first. Let the discrete-time model be given by

xk+1 = Fk(xk, uk), k = 0,1, . . . ,N − 1 (8)

with the state variable xk ∈ Xk and the control signal uk ∈ Uk.

A. Basic Algorithm

Let π = {µ0, µ1, . . . µN−1} be a control policy. Further let

the discretized cost of (7) using π with the initial state

x(0) = x0 be

Jπ(x0) =gN(xN) + φN(xN) . . .
+ N−1∑

k=0

hk(xk, µk(xk)) + φk(xk), (9)

where gN(xN) + φN(xN) is the final cost. The first term

gN(xN) represents the final cost in (7). The second term

is an additional penalty function φN(xN) that can be used

to enforce a constraint on the final state (4). The function

hk(xk, µk(xk)) is the cost of applying the control µk(xk)
at xk, according to H(x(t), u(t), t) in (7). The state con-

straints (5) are enforced by the penalty function φk(xk)

18th IEEE International Conference on Control Applications
Part of 2009 IEEE Multi-conference on Systems and Control
Saint Petersburg, Russia, July 8-10, 2009

978-1-4244-4602-5/09/$25.00 ©2009 IEEE 1625

for k = 0,1, . . . ,N − 1. The optimal control policy πo is the

policy that minimizes Jπ

Jo(x0) =min
π∈Π

Jπ(x0), (10)

where Π is the set of all admissible policies.

Based on the principle of optimality [1], the DP algorithm

evaluates the optimal cost-to-go1 function Jk(xi) at every

node in the discretized state-time space2 by proceeding

backward in time:

1) End cost calculation step

JN(xi) = gN(xi) + φN(xi) (11)

2) Intermediate calculation step for k = N − 1 to 0

Jk(xi) = min
uk∈Uk

{hk(xi, uk) + φk(xi) . . .
+Jk+1(Fk(xi, uk))} (12)

The optimal control is given by the argument that minimizes

the right-hand side of equation (12) for each xi at time index

k of the discretized state-time space.

The cost-to-go function Jk+1(x) used in (12) is evaluated

only on discretized points in the state space. Furthermore,

the output of the model function Fk(xi, uk) is a continuous

variable in the state space which can be between the nodes

of the state grid. Consequently, the last term in (12), namelyJk+1(Fk(xi, uk)) must be evaluated appropriately. There

exist several methods of finding the appropriate cost-to-goJk+1(Fk(xi, uk)) such as using a nearest-neighbor approxi-

mation or using more advanced interpolation schemes. In the

dpm function introduced in this paper, linear interpolation

of the cost-to-go Jk+1 is used. Since the state and the

input grids are equally spaced, the computational cost of

this interpolation is low compared to the cost induced by the

model evaluations.

The output of the algorithm (11)–(12) is an optimal control

signal map. This map is used to find the optimal control

signal during a forward simulation of the model (8), starting

from a given initial state x0, to generate the optimal state

trajectory. In the optimal control signal map the control

signal is only given for the discrete points in the state space

grid. The control signal, therefore, must be interpolated when

the actual state does not coincide with the points in the

state grid. In general, the complexity of the DP algorithm

is exponential in the number of state and input variables.

III. DPM-FUNCTION

The dpm function solves the discretized version of the

optimal control problem (1)–(7) using the dynamic pro-

gramming algorithm introduced in Section II-A. This section

shows the syntax and commands for solving such problems.

1The terms cost-to-go and optimal cost-to-go are used equivalently
throughout this paper referring to optimal cost-to-go. It is important to note
that the term optimal is used in the sense of optimality achievable under
the numeric errors.

2The following notation is used: x
i

k
denotes the state variable x in the

discretized state-time space at the node with time-index k and state-index
i. xk denotes a (state-)continuous state-variable at time k.

In particular the syntax is shown for a simple optimal control

problem. Since the problem is simple the entire code is

shown and explained. The dpm function can be downloaded

at [7].

When solving discrete-time optimal control

problems the dpm function is normally called using

[res dyn] = dpm(fun,par,grd,prb,options);

where fun is the model function handle, par is any user

defined parameter structure that is forwarded to the model,

grd is the grid structure, prb is the problem structure, and

options is the option structure. The output of the dpm

function are normally two structures representing the DP-

output and the signals from forward simulation of the model

using the optimal control input map.

Since the DP algorithm is often time consuming,

the dpm function can also be used only for for-

ward simulation when the DP output structure dyn is

precalculated. This can be very useful when chang-

ing the initial condition or when increasing the start-

ing time N0 of the problem. To call the dpm function

when the DP output structure is already calculated use

res = dpm(dyn,fun,par,grd,prb,options);

All the structures in the code above are further explained in

the remainder of this section.

A. Problem

In the problem structure all necessary parameters that

define the problem are given. The important parameters

are the time step Ts of the model description and the

problem length N. Moreover, in the problem structure an

optional cell array can be defined, which contains time-

variant information relevant for the problem description. For

example, if the model explicitly depends on the time the cell

array W{1} would contain a time vector with N elements.

The corresponding elements in these time-variant vectors are

forwarded to the model function throughout the problem.

The problem structure can also contain a starting time index

where the forward simulation starts. This can be helpful

when searching for a time optimal solution. An overview

of the problem structure is shown in Table I.

TABLE I

PROBLEM-STRUCTURE (PRB)

Ts time step (is passed to the model function)
N number of time steps in problem (integer that defines

the problem length)

N0 (optional) start time index (only used in forward
simulation)

W{.} (optional) vectors with length N containing time-
variant data for the model

B. State/Input Grids and Constraints

The grid structure grd contains all the information about

the state and input grids and constraints. An overview of the

1626

grd structure is shown in Table II. The grd structure is com-

posed by cell arrays, where there is a cell for each state vari-

able and each input variable. For example, for a problem with

two state variables the grd structure contains grd.X{1},

grd.X{2}, grd.Xn{1}.lo, grd.Xn{2}.lo, and so

on. The input grid is used in a similar way depending on

the number of input variables of the problem.

TABLE II

GRID-STRUCTURE (GRD)

Nx{.} number of grid points in state grid
Xn{.}.lo lower limits for each state (vector for time-variant or

scalar for fixed)
Xn{.}.hi upper limits for each state (vector for time-variant or

scalar for fixed)
XN{.}.lo final state lower constraints
XN{.}.hi final state upper constraints
X0{.} inital value (only used in forward sim)

Nu{.} number of grid points in input grid
Un{.}.lo (optional) upper limits for each input (vector for time-

variant or scalar for fixed)
Un{.}.hi (optional) upper limits for each input (vector for time-

variant or scalar for fixed)

C. Options

The DP approach can be used for many different prob-

lem settings and the options structure defines how to use

the algorithm. An overview of the options that can be

specified in the options structure is shown in Table III.

The HideWaitbar options decides if waitbars are shown

or not when running the DP algorithm. The SaveMap

option determines if the optimal cost-to-go is saved and

returned. Note that the memory requirements increase when

SaveMap=1.

An important option is the UseLine option, which de-

cides if the boundary line method, introduced in [8], is used

or not. The boundary line method is very useful for increas-

ing the accuracy of problems with final state constraints. For

more information about the boundary line method readers are

referred to [8]. Note in the actual version of the dpm function

it can only be used when there is only one state variable. If

the boundary line method is used, i.e., if UseLine=1, there

are three additional options Iter, Tol, and FixedGrid

that must be defined. The options Iter and Tol determines

the stopping criteria when numerically inverting the model

function. The option FixedGrid decides whether to adjust

the grid to the boundary lines or fix the grid to the definition

in grd.

Finally, the InfCost is the cost of infeasible states

and inputs of the model. When not using the boundary

line method InfCost is also used to enforce the final

state constraints in (9), with φN(xN) =InfCost when

xN ∉ [xf,min, xf,max].
D. Output

The outputs of the dpm function are two structures, namely

res and dyn. The res structure contains the results from

TABLE III

OPTIONS-STRUCTURE (OPTIONS)

HideWaitbar hide waitbars (0/1)
Warnings show warnings (0/1)
SaveMap save cost-to-go map (0/1)
UseLine use boundary line method (0/1)
FixedGrid (used if UseLine=1) using the original grid as

specified in grd or adjust the grid to the boundary
lines (0/1)

Iter (used if UseLine=1) maximum number of itera-
tions when inverting model

Tol (used if UseLine=1) minimum tolerance when in-
verting model

InfCost a large cost for infeasible states (I=1)

Minimize (optional) minimizing (or maximizing) cost function
(0/1) default is minimizing

InputType (optional) string with the same number of characters
as number of inputs. Contains the character ’c’ if
input is continuous or ’d’ if discrete (default is all
continuous).

gN{1} (optional) Cost matrix at the final time (must
be of size(options.gN{1}) = [grd.Nx{1}

grd.Nx{2} ... grd.Nx{.}])

the forward simulation of the model when applying the opti-

mal control input map. The dyn structure is associated with

the dynamic programming algorithm, the optimal cost-to-go,

and the optimal control input map. When the boundary line

method is used the dyn structure also contains the boundary

lines (with the states, inputs, and costs). An overview of the

two structures are shown in Tables IV and V.

TABLE IV

DP OUTPUT-STRUCTURE (DYN)

B.hi Xo,Uo{.},Jo contains the cost, input, and state for
the upper boundary line

B.lo Xo,Uo{.},Jo contains the cost, input, and state for
the lower boundary line

Jo{.,.} optimal cost-to-go (indexed by input number and
time index)

Uo{.,.} optimal control input (indexed by input number and
time index)

TABLE V

RESULTS-STRUCTURE (RES)

X{.} state trajectories
C{.} cost trajectory
I infeasible vector (problem is not solved if nonzero

elements)

signals structure containing all the signals that were saved in
the model function

E. Model

The equations describing the model must be implemented

in a correct format in order to be used with the dpm

function. To generate a sample function use the command

dpm('sample_model',Nx,Nu);

This command will save an m-function as

sample_model.m with a random model of Nx state

1627

variables and Nu input variables, suitable for usage with

the dpm function, which can be used as a template when

developing a new problem description.

In general the model function should have the format:

function [X, C, I, signals] = mymodel(inp,par)

where the model input structure inp is generated by the

dpm-function and contains the elements in Table VI. The

structure par can contain any user defined parameters

necessary in the model function. It is important that the

model function preserves the size of the inputs to the outputs.

Consequently, the elements inp.X{.}, inp.U{.} and the

outputs X{.}, C{.}, and I must have the same size. The

structure signals can contain any user defined internal

signals in model. These signals are stored during the forward

simulation and returned in the res structure when calling

the dpm-function, Table V.

TABLE VI

INPUT-STRUCTURE (INP)

X{.} current states (n+m dimensional matrix form de-
pending on the number of inputs and state variables)

U{.} current inputs (n+m dimensional matrix form de-
pending on the number of inputs and state variables)

W{.} current time-variant data (scalar)
Ts time step

TABLE VII

MODEL OUTPUTS

X{.} resulting states after applying inp.U{.} at
inp.X{.} (same size as inp.X{.})

C{.} resulting cost of applying inp.U{.} at inp.X{.}
(same size as inp.X{.})

I set with infeasible combinations (feasible=0, infeasi-
ble=1) (same size as inp.X{.})

signals structure with user defined signals (same size as
inp.X{.})

IV. EXAMPLES

To illustrate the usefulness of the dpm function, two

examples are discussed below. First, the well-known Lotka-

Volterra fishery problem [9] is explained and solved using

the dpm function. Of course, there exist an analytic solution

to the continuous-time Lotka-Volterra fishery problem, and

it is therefore not necessary to use a DP algorithm to solve

it. However, since this problem is simple and is similar to

the problems normally solved with DP, it is used as an

example to illustrate the syntax of the dpm function. Second,

an example of an optimal energy management problem for

a parallel hybrid-electric vehicle is solved using the dpm

function. This problem is well suited for the DP algorithm.

Not surprisingly, DP has been used extensively proposed in

the literature to solve such energy management problems,

both for comparison to causal controllers and for evaluation

of different system configurations. Some examples are [10],

[11], [12], and [13].

In the first example of the Lotka-Volterra fishery problem

the entire code necessary to use the dpm function is shown.

In the hybrid-electric vehicle example, however, the model

function contains far too many lines to be included in this

paper. Interested readers can download the complete model

equations at [7].

A. Lotka-Volterra Fishery

In order to evaluate the optimal solution by means of DP

a discrete-time approximation of the continuous-time Lotka-

Volterra model is used. Using an Euler forward approxima-

tion with a time step Ts = 0.2 days, the discrete-time model

is

xk+1 = f(xk, uk) + xk, k = 0,1, . . . ,N − 1 (13)

where

f(xk, uk) = Ts ⋅ (2

100
⋅ (xk −

x2

k

1000
) − uk) . (14)

The state xk ∈ [0, 1000] is the amount of fishes in a lake, the

control signal uk ∈ [0, 10] is the constant fishing rate during

one time step. The discrete-time optimal control problem of

maximizing the amount of fishes caught over a fixed period

of time can be formulated as follows:

min
uk∈[0, 10]

N−1∑
k=0

−uk ⋅ Ts (15)

s.t.

xk+1 = f(xk, uk) + xk (16)

x0 = 250 (17)

xN ≥ 750 (= xf,min) (18)

xk ∈ [0, 1000] (19)

N =
200

Ts

+ 1. (20)

To solve this optimal control problem the model function

(13) is implemented in Matlab as:

function [X, C, I, signals] = fishery(inp,par)

% state update

func = (0.02.*(inp.X{1}-inp.X{1}.ˆ2/1000)-inp.U{1});

X{1} = inp.Ts.*func + inp.X{1};

% cost

C{1} = -inp.Ts.*inp.U{1};

% infeasibility

I = 0;

signals.U{1} = inp.U{1};

Since the state and input spaces have to be discretized,

the dpm function includes a simple way to define such

grids. Let the state variable be limited between 0 and 1000

and let it be discretized using a step of 5 such that xk ∈{0,5,10, ...,995,1000}. Also, let the control input variable

be limited between 0 and 10 and let it be discretized with

a step of 0.5 such that uk ∈ {0,0.5,1, ...,9.5,10}. The

1628

st
at

e
v
ar

ia
b

le
x

[-
]

time t [days]

uo = 5

uo = 10

uo = 0 infeasiblex0

xf

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Fig. 1. The optimal control signal map, determined using dynamic
programming, for the discrete-time Lotka-Volterra system. The optimal state
trajectory for x0 = 250 when using the map is shown as the solid black
line.

optimal control problem (15)–(20) is then solved with the

dpm function using:

% create grid

grd.Nx{1} = 201;

grd.Xn{1}.lo = 0;

grd.Xn{1}.hi = 1000;

grd.Nu{1} = 21;

grd.Un{1}.lo = 0;

grd.Un{1}.hi = 10;

% set initial state

grd.X0{1} = 250;

% set final state constraints

grd.XN{1}.hi = 1000;

grd.XN{1}.lo = 750;

% define problem

prb.Ts = 1/5;

prb.N = 200*1/prb.Ts + 1;

% set options

options = dpm();

options.UseLine = 1;

options.SaveMap = 1;

options.InfCost = 1200;

options.FixedGrid = 1;

[res dyn] = dpm(@fishery,[],grd,prb,options);

The output of the DP algorithm is an optimal control signal

map, specifying the optimal control signal at each time step k

and at each state xk ∈ Xk. The optimal control signal map for

the Lotka-Volterra system is shown in Fig. 1. It shows that the

optimal control is ”not fishing” u = 0 if the fish population

is small x < 500, ”moderate fishing” u = 5 if the population

is x = 500 and ”full fishing” u = 10 if the population is

large x > 500. Toward the end of the problem, one must

stop fishing as late as possible, such that the population

reaches the specified minimum final size of xf,min = 750.

The resulting optimal state trajectory, i.e., the fish population

for an initial state of x0 = 250, is shown in Fig. 1 by the

black solid line.

B. Hybrid-Electric Vehicle Example

The energy consumption of hybrid-electric vehicles can

be described well using a quasi-static discrete-time model.

The modeling follows the ideas described in [14], [15].

Essentially, the model contains the battery state-of-charge as

the only state variable. In a nutshell, the combustion engine is

modeled using an affine Willans approximation, the electric

motor is modeled using an electric-power map (derived from

detailed simulations), and the battery is modeled as a voltage

source together with a resistance in series. The vehicle model

includes air drag, rolling friction, and inertial forces. The

gearbox is modeled using a constant efficiency of 95%.

The hybrid vehicle considered in this study has a 20%

hybridization as defined in [16].

The model equations can be summarized and described as

xk+1 = f(xk, uk, vk, ak, ik) + xk, (21)

where xk is the battery state-of-charge, uk is the torque split

factor, vk is the vehicle speed, ak is the vehicle acceleration,

and ik is the gear number. The model assumes isothermal

conditions of the components, no extra fuel consumption

during the startup of the combustion engine, and no energy

losses during gear shifting. A constant auxiliary electric

power demand of 350 W is used in the model.

Since the drive cycle is assumed to be known in advance

the particular driving speed vk, acceleration ak and gear

number ik at instance k can be included in the model

function to form the time-variant model:

xk+1 = fk(xk, uk) + xk, k = 0,1, . . . ,N − 1. (22)

The optimization problem of minimizing the total fuel mass

consumed

J =
N−1∑
k=0

∆mf (uk, k) ⋅ Ts (23)

for the hybrid vehicle over a given drive cycle, here the

Japanese 10-15 driving cycle (J1015), can be stated as the

discrete-time optimal control problem:

min
uk∈Uk

N−1∑
k=0

∆mf(uk, k) (24)

s.t.

xk+1 = fk(xk, uk) + xk (25)

x0 = 0.55 (26)

xN = 0.55 (27)

xk ∈ [0.4, 0.7] (28)

N =
660

Ts

+ 1 (29)

where ∆mf ⋅ Ts is the fuel mass consumption at each time

step. The time step in this example is Ts = 1 s. The optimal

control problem (24)–(29) is solved using DP. Figure 2

shows the resulting optimal control map dyn.Uo{1,:} and

state trajectory res.X{1} when using the dpm-function as

described below.

1629

st
at

e
v
ar

ia
b

le
x

[-
]

time t [s]

In
feasib

le
S

tan
d

still
M

ax
rech

arg
e

R
ech

arg
e

T
h
erm

al

T
o
rq

u
e

assist

E
lectrical

0 100 200 300 400 500 600

5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Fig. 2. Optimal input map obtained using the DP algorithm for a full
parallel hybrid-electric vehicle driving the Japanese 10-15 drive cycle. The
black curve shows the optimal state-of-charge trajectory when the battery
is 55% charged at the start.

N ⋅Nx ⋅Nu [points x10
6]

N
⋅
N

x
⋅
N

u
t c

p
u

[p
o

in
ts

x
1
0
6
/s

]

HEV

Fishery

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Fig. 3. The computational cost for the two examples. The values are given
in calculated grid points per second as a function of the total number of
grid points.

% create grid

grd.Nx{1}=61; grd.Xn{1}.hi=0.7; grd.Xn{1}.lo=0.4;

grd.Nu{1}=21; grd.Un{1}.hi=1; grd.Un{1}.lo=-1;

% set initial state

grd.X0{1} = 0.55;

% final state constraints

grd.XN{1}.hi = 0.55;

grd.XN{1}.lo = 0.55;

% define problem

prb.W{1} = speed_vector; % (661 elements)

prb.W{2} = acceleration_vector; % (661 elements)

prb.W{3} = gearnumber_vector; % (661 elements)

prb.Ts = 1;

prb.N = 660*1/prb.Ts + 1;

% set options

options = dpm();

options.UseLine = 1;

options.SaveMap = 1;

options.InfCost = 1000;

options.Iter = 5;

options.InputType = 'c';

options.FixedGrid = 0;

[res dyn] = dpm(@hev,par,grd,prb,options);

V. CONCLUSIONS AND FUTURE WORKS

In this paper a Matlab function is introduced that effi-

ciently solves deterministic DP problems. The syntax and

the main features of the function are highlighted using

two examples. This dpm function together with the model

functions introduced in this paper can be downloaded at [7].

The computational time3 required for backward calculation

for the two examples, without using the boundary line, is

shown in Fig. 3. It shows that the function evaluates 600000

points/s for the fishery problem and 200000 points/s for the

HEV problem. This is due to the more complex model in

the HEV problem. Future work includes the attempt of a

possible extension of the boundary line method to more

general problems, and the support of simple discrete-time

Simulink models. The main task for the near future will be

to optimize the memory requirements of the function.

VI. ACKNOWLEDGMENTS

Thanks to Daniel Ambühl and Moritz Oetiker for their

constructive inputs during the development of the code and

for testing and evaluating the dpm function.

REFERENCES

[1] R. E. Bellman, Dynamic programming. Princeton - N.J.: Princeton
University Press, 1957.

[2] D. Bertsekas, Dynamic programming and optimal control, 3rd ed.
Belmont, Massachusetts: Athena Scientific, 2005.

[3] R. Luus, Iterative dynamic programming, ser. Monographs and surveys
in pure and applied mathematics. Boca Raton: Chapman & Hall/CRC,
2000, vol. 110.

[4] R. E. Bellman and E. S. Lee, “History and development of dynamic
programming,” IEEE Control Systems Magazine, vol. 4, no. 4, pp.
24–28, 1984.

[5] M. Back, S. Terwen, and V. Krebs, “Predictive powertrain control
for hybrid electrical vehicles,” in IFAC Symposium on Advances in

Automotive Control, Salerno, Italy, April 2004, pp. 451–457.
[6] J. Pu and C. Yin, “Optimal control of fuel economy in parallel hybrid

electric vehicles,” Journal of Automobile Engineering, vol. 221, pp.
1097–1106, 2007.

[7] O. Sundström and L. Guzzella, “DPM-function,” Institute

for Dynamic Systems and Control, Department of

Mechanical and Process Engineering, ETH Zurich, 2009,
http://www.idsc.ethz.ch/research/downloads.

[8] O. Sundström, D. Ambühl, and L. Guzzella, “On implementation of
dynamic programming for optimal control problems with final state
constraints,” Oil & Gas Science and Technology - Revue de l’IFP,
2009, Accepted for publication.

[9] M. Schaefer, “Some aspects of the dynamics of populations important
to the management of the commercial marine fisheries,” Bulletin of

Mathematical Biology, vol. 53, pp. 253–279, 1991, Reprinted from the
Bulletin of the Inter-American Tropical Tuna Commission, 1(2):27–
56, 1954.

[10] H. Mosbech, “Optimal control of hybrid vehicle,” in International

Symposium on Automotive Technology & Automation, vol. 2. Turin,
Italy: Automotive Automation Ltd, 1980, pp. 303–310.

[11] C.-C. Lin, H. Peng, J. W. Grizzle, and J.-M. Kang, “Power manage-
ment strategy for a parallel hybrid electric truck,” IEEE Transactions

on Control Systems Technology, vol. 11, no. 6, pp. 839–849, 2003.
[12] A. Sciarretta, M. Back, and L. Guzzella, “Optimal control of parallel

hybrid electric vehicles,” IEEE Transactions on Control Systems

Technology, vol. 12, no. 3, pp. 352–363, 2004.
[13] A. Sciarretta and L. Guzzella, “Control of hybrid electric vehicles,”

IEEE Control Systems Magazine, vol. 27, no. 2, pp. 60–70, 2007.
[14] L. Guzzella and A. Sciarretta, Vehicle propulsion systems introduction

to modeling and optimization, 2nd ed. Berlin: Springer, 2007.
[15] L. Guzzella and C. H. Onder, Modelling and control of internal

combustion engine systems. Berlin: Springer, 2004.
[16] O. Sundström, L. Guzzella, and P. Soltic, “Optimal hybridization in

two parallel hybrid electric vehicles using dynamic programming,”
in 17th IFAC World Congress, ser. Proc. of the 17th IFAC World
Congress, Seoul, Korea, 2008.

3Calculated on a 32-bit Intel Pentium D 2.8GHz with 2.0 GB RAM.

1630

