Figure 1 Learning activity for introducing the quantitative problem-solving rubric ### **Orientation:** In this activity you will be examining a quantitative problem-solving rubric that we will use periodically throughout the term to gage growth in applying and effectively working through the problem-solving process. You will work with a peer, performing an assessment of their homework assignment. Giving and receiving feedback using the rubric should deepen your understanding of this assignment and stimulate ideas for improving your own problem-solving process in future assignments. ## **Learning Objectives:** - 1. Attain shared understanding of the role and importance of dimensions (row labels) in the quantitative problem-solving rubric. - 2. Gain experience scoring your own homework and that of a peer with the quantitative problem-solving rubric. - 3. Make plans to elevate the quality of future homework solutions based on your peer review and class insights about use of the rubric. # **Targeted Skills:** - assessing performance providing feedback for improving performance - seeking assessment analyzing past performance to improve future performance - leveraging solutions modifying homework for wider audiences and reusability #### **Resources:** - your latest homework assignment - scored student work - blank quantitative problem-solving rubric ### Tasks: - 1. Work with a partner. - 2. Review the format and content of the quantitative problem-solving rubric as well as the scored example of student work. - 3. Answer the following critical thinking questions: - What is meant by each dimension (row labels) and why are these important? - What evidence is found in the sample work for the assigned scores? - What strengths do you see in the sample work that you want to emulate? - Why are these valuable? - What improvements in the sample work would increase its value? - How might these be implemented? - What overall performance level given in the column headers should be your goal by the end of this course? Why? - What is your most burning question about the rubric or its use in this class? - 4. Exchange homework papers and score them using the rubric. Give a global score in each dimension for the entire assignment rather than for each problem. - 5. On the back of the rubric: - Give two strengths in the homework and explain their significance. - Give two areas for improvement in the homework along with an action plan. - Give two insights about using the rubric as a tool in this class. - 6. Exchange papers and debrief one another about your findings. - 7. As a class, inventory observed strengths, improvements, and insights that would add value to future homework assignments as well as to subsequent use of the rubric. - 8. Discuss ideas for relative weighting, if any, for each of the dimensions in the rubric. - 9. Submit your homework and your peer score to the instructor for validation. Figure 2 Sample of student work from a dynamics class | | Dimension | Weighting/
Applicability | 0-Absent | 1-Somewhat
On Track | 2 - On Track | 3 - Proficient | 4 - Exemplary | |--------------------|--|-----------------------------|------------------------------|--|---|---|--| | Problem Definition | SYSTEM DESCRIPTION (representation, notation, and annotation) | | missing
system
diagram | missing
components of
system diagram | all components
identified in
system diagram | all components
identified and
linked in system
diagram | insightful system
diagram | | | ASSUMPTIONS | | none or incorrect | implicit and incomplete | (implicit and
complete) or
(explicit and
incomplete) | explicit and complete | explicit, complete,
justified | | | KNOWNS & UNKNOWNS | | not identified | incompletely
identified | completely identified and cryptically labeled | completely
identified and
mostly labeled | completely identified and labeled | | | GOVERNING EQUATIONS | | missing | partial set | complete set,
inconvenient form
for solution | complete set,
convenient form
for solution | annotated,
complete set | | | SOLUTION METHOD (line of reasoning, use of tools) | | missing | poorly ordered | logical with minor flaws | logical and correct | optimal | | Solution | ANSWER (boxed, correct, units, sig figures) | | missing all attributes | boxed | boxed and units | boxed, units, and correct | boxed, units, correct, and significant figures | | Solu | VALIDATION (unit consistency, order of magnitude, independent verification) | | no effort to validate | incorrect unit
check | units checked | units checked,
magnitude
checked | units checked
magnitude checked,
checked against
alternative solution | | Professionalism | TECHNICAL COMMUNICATION (legibility, layout, formatted tables, graph labels, etc.) | | missing component(s) | not organized | organized for reuse by the author | organized for
reuse by a
third party | suitable for
professional
dissemination | | | REFLECTION (transferability of solution, lessons learned about process, audience) | | no effort | not relevant | no insights | insightful (in a narrow context) | thoughtful (able
to transfer to new
context) | Strengths: Your system diagram highlighted your solution approach, which helpfully divided the problem into 2 parts. The validation method used for the projectile motion part of the problem was quite good as was the reflection. Decomposition is an excellent problem-solving technique that can be leveraged later. Improvements: Your statement of assumptions and unknowns was incomplete with regard to the box sliding down the ramp. The governing equations were correct, but the form that you used was not expressed. The organization and layout of your solution was a bit haphazard. Aim to make your work usable and readable by classmates. | | Dimension | Weighting/
Applicability | 0-Absent | 1-Somewhat
On Track | 2 - On Track | 3 - Proficient | 4 - Exemplary | |--------------------|--|-----------------------------|------------------------------|--|---|---|--| | Problem Definition | SYSTEM DESCRIPTION (representation, notation, and annotation) | | missing
system
diagram | missing
components of
system diagram | all components
identified in
system diagram | all components
identified and
linked in system
diagram | insightful system
diagram | | | ASSUMPTIONS | | none or incorrect | implicit and incomplete | (implicit and
complete) or
(explicit and
incomplete) | explicit and complete | explicit, complete,
justified | | | KNOWNS & UNKNOWNS | | not identified | incompletely
identified | completely identified and cryptically labeled | completely identified and mostly labeled | completely identified and labeled | | | GOVERNING EQUATIONS | | missing | partial set | complete set,
inconvenient form
for solution | complete set,
convenient form
for solution | annotated,
complete set | | | SOLUTION METHOD (line of reasoning, use of tools) | | missing | poorly ordered | logical with minor flaws | logical and correct | optimal | | Solution | ANSWER (boxed, correct, units, sig figures) | | missing all attributes | boxed | boxed and units | boxed, units, and correct | boxed, units, correct, and significant figures | | Solu | VALIDATION (unit consistency, order of magnitude, independent verification) | | no effort to validate | incorrect unit
check | units checked | units checked,
magnitude
checked | units checked
magnitude checked,
checked against
alternative solution | | Professionalism | TECHNICAL COMMUNICATION (legibility, layout, formatted tables, graph labels, etc.) | | missing component(s) | not organized | organized for
reuse by the
author | organized for
reuse by a
third party | suitable for
professional
dissemination | | | REFLECTION (transferability of solution, lessons learned about process, audience) | | no effort | not relevant | no insights | insightful (in a narrow context) | thoughtful (able
to transfer to new
context) | Strengths: Improvements: