

802.11 LAN inalámbricas: una visión general de tecnología

RAUL BAREÑO GUTIERREZ

Cisco Networking Academy® Mind Wide Open

- Describe IEEE 802.11 wireless LAN (WLAN) and related network standards and specifications
- Describe the components and network architectures used in WLANs
- Identify the characteristics of RF technology
- Describe radio signaling and the operation of equipment used in a WLAN
- Identify common security threats and countermeasures for WLANs including authentication and encryption methods and protocols
- Explain the use of Virtual Local Area Networks (VLANs) to enhance security within an enterprise WLAN implementation

Design a basic WLAN

Identify the key steps of a site survey to prove the viability of a WLAN design

WLAN INTRODUCTION

- Network access without wires
- Move around freely within wireless coverage areas

WLAN BENEFITS

- Increased user mobility
- Increased user productivity
- Network flexibility and portability
- Ease and speed of deployment
- Cost and/or time savings
- Improved aesthetics
- Shared resources
- Increased connectivity options
- Improved efficiency and reduced costs

WLAN OVERVIEW

- Defined by the IEEE 802.11 specifications
- Also known as Wi-Fi and/or "Hot Spots"

WLAN CONCEPTS

- Uses RF technology to transmit and receive data
- RF signals pass through most objects
- Not immune to signaling issues: Absorption, Reflection, Refraction, Diffraction, and Scattering

OVERALL SPECTRUM

CHANNELS IN THE 2.4 GHz BAND

Channel ID	Frequency (GHz)	US / Canada X'10' / X'20' (FCC / IC)	Europe X'30' (ETSI)	Spain X'31'	France X'32'	Japan X'40'	Japan X'41'
1	2.412	Х	Х				Х
2	2.417	Х	Х				Х
3	2.422	Х	Х				Х
4	2.427	Х	Х				Х
5	2.432	Х	Х				Х
6	2.437	Х	Х				Х
7	2.442	Х	Х				Х
8	2.447	Х	Х				Х
9	2.452	Х	Х				Х
10	2.457	Х	Х	Х	Х		Х
11	2.462	Х	Х	Х	Х		Х
12	2.467		Х		Х		Х
13	2.472		Х		Х		Х
14	2.484					Х	
D ES	SPECIAL IZACION	EN CON					1E

8

2.4 GHz CHANNEL RANGES

Q

SPREAD SPECTRUM

 FHSS systems use a radio carrier that "hops" from frequency to frequency in a pattern known to both transmitter and receiver

-Easy to implement

-Resistant to noise

–Limited throughput (1-3 Mbps @ 2.4 GHz)

 DSSS & HR/DSSS systems convert data bits to a wide bit pattern called a "chip"

 Updated definition, HR/DSSS provides higher throughput than FH (up to 11 Mbps @ 2.4 GHz)

-Better range or coverage

-Less resistant to noise (made up for by redundancy)

5 GHz BAND

>Regulatory classes for 5 GHz bands in the USA

Regulatory Class	Channel Starting Frequency (GHz)	Channel Spacing (MHz) Channel Set		Transmit Power Limit (mW)	Emission Limits Set	Behavior Limits Set
1	5	20	36,40,44,48	40	1	1, 2
2	5	20	52,56,60,64	200	1	1
3	5	20	149,153,157,161	800	1	1
4-255	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

5 GHz BAND (continued)

>Regulatory classes for 5 GHz bands in Europe

Regulatory Class	Channel Starting Frequency (GHz)	Channel Spacing (MHz)	Channel Set	Transmit Power Limit (EIRP)	Emission Limits Set	Behavior Limits Set
1	5	20) 36,40,44,48 200 1		1	2,3
2	5	20	52,56,60,64	200	1	1,3,4
3	5	20	100,104,108, 112,116,120, 124,128,132, 136,140	1 W	1	1,3,4
4-255	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

5 GHz BAND (continued)

>Regulatory classes for 4.9 and 5 GHz bands in Japan

Regulatory Class	Channel Starting Frequency (GHz)	Channel Spacing (MHz)	Channel Set	Transmit Power Limit (dBm)	Emission Limits Set	Behavior Limits Set
1	5	20	34,38,42,46	22	1	1,2,6
2	5	20	8,12,16	24	2	5,6,7
3	5	20	8,12,16	24	2	5,6,8
4	5	20	8,12,16 24		3	5,6,7
5	5	20	8,12,16	24	3	5,6,8
6	5	20	8,12,16	22	1	5,6,8
7	4	20	184,188,192,196	24	2	5,6,7
8	4	20	184,188,192,196	24	2	5,6,8
9	4	20	184,188,192,196	24	3	5,6,7
10	4	20	184,188,192,196	24	3	5,6,8
11	5	20	34,38,42,46	22	1	5,6,8
12	5	10	7,8,9,11	24	2	5,6,7
	ESPECIALIZA					5

5 GHz BAND (continued)

> Regulatory classes for 4.9 and 5 GHz bands in Japan

Regulatory Class	Channel Starting Frequency (GHz)	Channel Spacing (MHz)	Channel Set	Transmit Power Limit (dBm)	Emission Limits Set	Behavior Limits Set
13	5	10	7,8,9,11	24	2	5,6,8
14	5	10	7,8,9,11	24	3	5,6,7
15	5	10	7,8,9,11	24	3	5,6,8
16	5	10	8,12,16	22	2	5,6,7
17	4	10	183,184,185, 187,188,189	24	2	5,6,8
18	4	10	183,184,185, 187,188,189	24	3	5,6,7
19	4	10	183,184,185, 187,188,189	24	3	5,6,8
20	4	10	183,184,185, 187,188,189	17	1	5,6,8
21-255	Reserved	Reserved	Reserved	Reserved Reserved		Reserved

14

IEEE 802.11 BASICS

802.11a SUMMARY

Operates in the 5 GHz U-NII bands, "Wi-Fi5"

-8 channels total in the lower and middle bands

- Supports OFDM at data rates up to 54 Mbps including:
 - –6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, 54 Mbps
- Coverage up to 50 meters (164 feet)
- Uncrowded frequency band
 - -8 non-overlapping channels
 - -Less populated frequency
- Will not interoperate with 802.11b/g systems

Global deployment issues may exist
TELECOMUNICACIONES

802.11b/g SUMMARY

- Operates in the 2.4 GHz ISM band
 - -14 total channels

Crowded frequency

- -Only 1-3 channels usable at any time
- 802.11b supports data rates up to 11 Mbps –Uses DSSS
- 802.11g supports data rates up to 54 Mbps
 - -Similar data rates as 802.11a
 - -Backward compatible with 802.11b
- Coverage up to 100 meters (328 feet)
- Most commonly implemented standard, "Wi-Fi"

802.11 COMPARISONS

	802.11a	802.11b	802.11g
Data rates	Up to 54 Mbps (54, 48, 36, 24, 18, 12 and 6 Mbps)	Up to 11 Mbps (11, 5.5, 2, & 1 Mbps)	Up to 54 Mbps (54, 33, 22, 11, 5.5, 2, and 1 Mbps)
Range	50 Meters	100 Meters	100 Meters
Bandwidth	5 GHz U-NII	2.4 GHz ISM	2.4 GHz ISM
Modulatio n	OFDM	DSSS	DSSS, OFDM, and modified versions

19

DATA AND THROUGHPUT RATES

 Data rates will drop as distance to AP increases as a result of reduced signal quality

 Actual throughput is about onehalf of actual data or link rate

- Throughput rates affected by:
 - Multicast rate (defaults at a rate of 1 Mbps)
 - -Framing overhead

Collision avoidance mechanisms

Example of range / data rate differences between 802.11a and 802.11b

ATHEROS HIGH SPEED TECHNOLOGIES

Super G and Super AG

- -Proprietary features built into Atheros chipsets
- Allows 108 Mbps maximum data rate or link speed and increased throughput up to 60 Mbps
- -Bonds two channels in the 2.4 GHz or 5 GHz spectrum
- -Three possible modes: Base Mode 22 Mbps throughput
 - •Super or Static Turbo Mode 40 Mbps throughput
 - •Dynamic Turbo Mode 60 Mbps throughput

RELATED PUBLISHED AND PROPOSED WLAN STANDARDS

- 802.11c Bridge Operation Procedures
- 802.11d Country Compatibility (Roaming)¹
- 802.11e QoS Enhancements
- 802.11f Inter-Access Point Protocol (IAPP)²

Published Date

- 1 2001
- 2 2003

RELATED PUBLISHED AND PROPOSED WLAN STANDARDS (continued)

- 802.11h Spectrum and Power Control Management³
- 802.11i Enhanced Security⁴
- 802.11j Channel Selection for Japan⁵
- 802.11k Radio Resource Measurement Enhancements
- 802.111 (letter skipped)
- 802.11m Maintenance of the IEEE Standard
- 802.11n Enhancement for Higher Throughput

RELATED PUBLISHED AND PROPOSED WLAN STANDARDS (continued)

- 802.11p Wireless Access for the Vehicular Environment (WAVE)
- 802.11r Fast roaming
- 802.11s Wireless mesh networking
- 802.11T Wireless Performance Prediction (WPP)
- 802.11u Interworking with non-802 networks
- 802.11v Wireless network management

OTHER RELATED STANDARDS

- 802.3af Power Over Ethernet⁶
- 802.1X Authentication⁷
- LWAPP Lightweight Access Point Protocol
- CAPWAP Control and Provisioning of Wireless Access Points

http://www.ieee.org/

http://www.fcc.gov/

http://www.wi-fi.org/

Autome suided Induser idede Santarder

WIRELESS COMPONENTS

- Wireless Medium
- Stations and access points
 - -Transceivers to move data
 - -Antennas used for radio signal
- Distribution system

ESPECIALIZACION EN TELECOMUNICACIONES

BASIC SERVICE SETS

- Connects two remote sites wirelessly
- A.K.A. Wireless Distribution System (WDS)
- Implemented by enabling a configuration option on an AP

GENERIC 802.11 MAC FRAME

- >Three types of frames with several subtypes:
- >Management
 - Probe
 - Beacon
 - Authentication
 - Association
 - Reassociation
 - Disassociation
 - Deauthentication

>Control

- Request-to-Send
- Clear-to-Send
- Acknowledgement

ESPECIALIZACION EN TELECOMUNICACIONES

>Data

R

802.2 ENCAPSULATION

		6	6	5	2	Varia	ble	4		
	Ethernet	Destinatio MAC	n Sou M/	irce AC c	Type 0x0800 (IP) 0x0806 (ARP)	IP pac	ket	FCS	nelar	
	12			1		3	Copy		Сору	Recalculate
802.1h	MAC headers	SNAP DSAP 0xAA	SNAP SSAP OxAA	Contr 0x03 (rol Ether (UI) Ox	net tunnel 00-00-F8	Туре		IP packet	FCS
	12									
RFC 1042	MAC headers	SNAP DSAP OxAA	SNAP SSAP OxAA	Contr 0x03 (rol Ri enca (UI) Oxi	C 1042 ipsulation 00-00-00	Туре		IP packet	FCS
	24 or 30									
802.11	802.11 MAC headers	SNAP DSAP 0xAA	SNAP SSAP OxAA	Contr 0x03 (rol Ri enca (UI) Oxi	C 1042 psulation 00-00-00	Туре		IP packet	FCS

R1

WIRELESS MANAGEMENT PROCESSES

- Scanning
- Station (user) Authentication and Association
- Beacon Management
- Power Management Mode

SCANNING

- Station identifies if wireless network present
- Passively listens for or actively probes for beacon frames
- Builds a table of APs from the beacons

PECIALIZACION EN ECOMUNICACIONES

Begins authentication and association process

AUTHENTICATION & ASSOCIATION Open System Authentication

Authentication request including identity, algorithm – open system, sequence number 1

Authentication response including algorithm – open system, sequence number 2, status code (association Success/denied/rejected/other)

Shared Key Authentication

Authentication request

Challenge Response

Challenge Text

Status (success, deny, reject)

ROAMING & REASSOCIATION

1. Reassociate request

- Disassociation ends the association relationship and removes the station from the WLAN
- Deauthentication breaks the authentication between a station and AP
- Used when the station has not properly joined a network, performed an incorrect operation, or has left the cell service

UNICACIONES

BEACON MANAGEMENT

- Used during scanning to identify presence of a WLAN
- Used in both FHSS and DSSS WLANs
- Transmitted at regular intervals
 About 10 times per second
- Provide network parameters for joining
- Stations must be close enough to hear beacons from an AP
- Provides time synchronization between station and AP
- Provides channel usage information
- Beacons are transmitted from the AP at the lowest supported (configured) data rate

POWER MANAGEMENT MODE

- Allows stations to go into "sleep" mode to conserve battery power
- Defines how long a station will be down (in milliseconds)
- Frames to be buffered at the AP until station wakes up
- Relies on the time synchronization performed through beacon management
- Station wakes up after predetermined interval and receives any buffered frames from the AP
- Two modes:
 - -Power Save Polling Mode (PSP) station using power saving when available
 - -Continuous Aware Mode (CAM) power saving is not in use and the station is always on and ready to transmit and receive

DYNAMIC RATE SHIFTING

- Automatically adjust data rates based on signal quality
- Automatically adjusted by the AP
- For example:
 - -Station A has a high quality signal and operates at 11 Mbps
 - -Station B has a medium quality signal and operates at 5.5 Mbps
 - -Station C has minimal signal and is operating at 1 Mbps

μ

HIDDEN NODE

Area reachable by station A

-X-

С

 $\Delta \cap$

RTS/CTS HANDSHAKING

- Used to provide CSMA/CA control
- Avoids bandwidth loss due to collisions
- Short control messages (frames) sent to start or stop transmission

CELL SIGNALING CHARACTERISTICS

 Λ^{2}

SIGNAL PHASE

44

WATTS VERSUS DECIBELS

dBm	Watts	dBm	Watts	dBm	Watts
0	1.0 mW	16	40 mW	32	1.6 W
1	1.3 mW	17	50 mW	33	2.0 W
2	1.6 mW	18	63 mW	34	2.5 W
3	2.0 mW	19	79 mW	35	3 W
4	2.5 mW	20	100 mW	36	4 W
5	3.2 mW	21	126 mW	37	5 W
6	4 mW	22	158 mW	38	6 W
7	5 mW	23	200 mW	39	8 W
8	6 mW	24	250 mW	40	10 W
9	8 mW	25	316 mW	41	13 W
10	10 mW	26	398 mW	42	16 W
11	13 mW	27	500 mW	43	20 W
12	16 mW	28	630 mW	44	25 W
13	20 mW	29	800 mW	45	32 W
14	25 mW	30	1.0 W	46	40 W
15	32 mW	31	1.3 W	47	50 W

48

Johon sidar rotuso izid Szejtando

OMNIPOLE ANTENNA

- Transmits signals equally on a horizontal plane
- Coverage cell is best horizontally but not vertically
 - -Round (horizontal plane)
 - Donut shaped (on all three dimensions)
- Typically used indoors
- Low gain between 3-10 dBi of gain (low gain)

DIPOLE ANTENNA

- Figure 8 transmission pattern
- Low gain though it achieves greater distance
- Typically used indoors for hallways or corridors
- Not as good for ceiling mounting

YAGI OR SEMI-DIRECTIONAL ANTENNA

- Semi-directional, more focused transmission pattern
- Provides moderately high gain, 12-18 dBi
- >Flat in design so it can be used against a wall or in a corner
- >Has an extended forward reach which is good for indoor and/or outdoor use
 - Short to medium range bridging
 - Along narrow hallways and corridors

ESPECIALIZACION EN ELECOMUNICACIONES

PATCH PANEL OR PARABOLIC ANTENNA

- Semi- or highly-directional, more focused, narrower transmission pattern
- Can provide up to 24 dBi in gain (regulatory concerns)
- Good for indoor or outdoor use
 - Along narrow hallways and corridors
 - Highly-directional designs cover distances of up to 20 miles

CHOOSING THE RIGHT ANTENNA

- When choosing the best antenna to use take in consideration:
 - -Coverage area
 - -Number of users
 - -Installation location
 - -Obstructions
- Be aware of regulatory limits
 –EIRP is limited to 36 dBi

WLAN SECURITY INTRODUCTION

- Design characteristics
 - -Easy Accessibility for Users
 - -Optimal Coverage
 - -Data Privacy
 - -Network Security
- Are not naturally secure
 - -Open System, simple association
 - -No encryption for transmitted data
 - -Create holes in firewalls and trusted zones
- Prone to hackers and "war driving"

TYPES OF WIRELESS ATTACKS

- Broadcast Monitoring (snooping)
- **RF** Jamming
- Rogue Access Point
 - -Man-in-the-Middle
 - -Masquerading
- CLI or Web Management interface

Internet

Firewall

WLAN SECURITY FRAMEWORK

- WLAN security components
 - -User authentication
 - -Key management computation and distribution
 - -Data Encryption privacy and integrity
- Implementation hierarchy
 - -Open Access Open system authentication, no encryption
 - -Baseline security Open system authentication, WEP
 - Enhanced security 802.1x authentication, AES or TKIP encryption

SECURITY PROTOCOLS

- Local MAC Filtering
- Wired Equivalent Privacy (WEP)
- Wi-Fi Protected Access (WPA)
 - -Temporal Key Integrity Protocol (TKIP)
- WPA2 2nd generation WPA
 - -Advanced Encryption Standard (AES)
- 802.1X Authentication
 - -Several types of EAP (Extensible Authentication Protocol)
 - -Several types of PEAP (Protected EAP)
 - -3Com Dynamic Security Link
 - -Lightweight Extensible Authentication Protocol (LEAP)

LOCAL MAC AUTHENTICATION

- Allow or deny authentication to a station
 - -MAC address-based
 - -Not user authentication
- Good for small WLAN implementations
 - -Approximately 50 users or less
- Issues
 - -Forged MAC address
 - -Not totally secure
 - -Administratively difficult to maintain in large networks

WIRED EQUIVALENT PRIVACY (WEP)

- A shared key encryption and authentication mechanism for 802.11 WLANs
 - -Original 802.11 security implementation
 - -Improves privacy and integrity
- Used between the station and AP only
- Only payload data, not header, is encrypted
 Management and control frames not encrypted
 - -Uses 64 or 128 bit encryption method
 - a.k.a. 40 and 104 bit RC4 encryption
 - Static keys
 - -Up to four user configurable, shared keys
 - •a.k.a. "Shared Key Authentication"
 - •Keys must be same end-to-end among all systems
 - -Verifies transmitted data is same as received data
- Not very secure

Shared Key Authentication

WI-FI PROTECTED ACCESS (WPA)

- Improves security as compared to WEP
- Introduced in 2002
- Enhanced data encryption
 - -WPA using Temporal Key Integrity Protocol (TKIP)
 - -WPA2 using Advanced Encryption Standard (AES)
- User authentication implemented using either:
 - -802.1x Authentication (enterprise applications)
 - -Pre-Shared Key (SOHO applications)
 - Manually-entered keys or passwords
 - •Designed to be easy to set up for the home user.
- Forward compatible with 802.11i Enhanced Security
- Susceptible to DoS attacks

ECIALIZACION EN COMUNICACIONES

TEMPORAL KEY INTEGRITY PROTOCOL (TKIP)

- Allows WEP security to be upgraded, adds
 - -Message integrity check (for weak key attacks)
 - -Per-packet key mixing
 - -Key management and distribution
- Each key is used to encrypt one and only one data packet

IEEE 802.11i ENHANCED SECURITY

- Enhances the current 802.11 MAC to provide improvements in security and authentication mechanisms
- Based on federal encryption standard AES (Advanced Encryption Standard)
 - -Replaces Triple DES (Data Encryption Standard)
 - -Requires hardware acceleration
 - -Rijndael algorithm
 - -Symmetric block cipher
 - -Keys 128, 192, 256 bits

802.1x AUTHENTICATION

- Framework for authenticating and controlling user traffic to protect wired and wireless LANs
 - -Centralized authentication rather than distributed at each AP
 - •Messages forwarded to RADIUS authentication server
 - -Access control still maintained at the AP
 - -Must choose authentication method
- Uses dynamically varying encryption keys
- Supported in Microsoft's Windows XP, Funk, and Meeting House operating systems (supplicant and authenticator)
- Scales well for large enterprise networks

802.1x AUTHENTICATION METHODS

- EAP-MD5 (Extensible Authentication Protocol-Message Digest 5)
- EAP-TLS (EAP-Transport Layer Security)
- EAP-TTLS (EAP-Tunneled TLS) / MSCHAPv2 (Microsoft Challenge Handshaké Protocol)
- EAP-SIM (Subscriber Identity Module)
- PEAPv0 (Protected EAP) / EAP-MSCHAPv2
- PEAPv1/EAP-GTC (Generic Token Card)
- 3Com Dynamic Security Link

IALIZACION EN

Lightweight Extensible Authentication Protocol (LEAP)

66

ESPECIALIZACION EN TELECOMUNICACIONES

RADIUS AUTHENTICATION SUPPORT

- RADIUS Centralized User Authentication is performed between the wireless client and the RADIUS server, in conjunction with the IEEE 802.1x standard-based network log-in
- Any RADIUS server supporting EAP-MD5, EAP-TLS, EAP-TTLS
 - -802.1x implementation to provide a secure authentication solution for wireless stations
 - -3Com's Universal Client Certificate supporting EAP-TLS enables RADIUS servers that support EAP-TLS to achieve Dynamic Key Distribution (Per-User / Per-Session key management)
- RADIUS Accounting

Username, start time, stop time, packet input/output

EAP-MD5

- Converts a message of arbitrary length to a 128 bit value
- Never sends password in clear text
- Supported on most RADIUS servers
 - -Cisco
 - –Funk
 - -Microsoft

EAP-TLS

- Authenticates station and user
 - -Station by use of a digital certificate
 - -User by username and password
- Requires support for Digital Certificates (server-side and client-side)
- 3Com also adds 128 Dynamic Key encryption
 –Key changes every 15 minutes
- Supported in high end RADIUS Servers
 - -Microsoft
 - -Funk Steel-Belted Radius
 - -Cisco

EAP-TTLS

- Tunneled EAP-TLS
 - Eliminates the need for client-side digital certificates, but still requires server-side digital certificates
 - -But can use MS-CHAP for password checking
- Currently only supported in Funk Software Odyssey Server

EAP-SIM

- Created for the GSM mobile telecom industry
- Uses a smartcard which securely stores the key identifying a mobile subscriber for authentication
- No native OS support

PEAPv0/EAP-MSCHAPv2

- Commonly known as PEAP
- Competes with EAP-TTLS
- Uses TLS and digital certificates
- Two-phase TLS authentication
- Uses TLS encryption
- Allows for support of token cards

PEAPv1/EAP-GTC

- Created by Cisco as an alternative to PEAP
- Allows the use of an inner authentication protocol other than Microsoft's MSCHAPv2
- No native OS support

3COM DYNAMIC SECURITY LINK

- Per user, per session dynamic key with 128-bit encryption
 - –Unique key automatically generated between the AP & wireless client each session
 - -Keys are done in the background, automatically, not entered manually
- Internal database supports 1000 usernames/passwords
- Provides a superior security solution when AP is deployed in networks without a centralized authentication server

LEAP

Cisco-only Protocol - used to fix WEP

- -Requires Cisco or Funk RADIUS Server
- -Requires Cisco APs
- -Requires Cisco or 3Com X-Jack® client cards
- -Is only Dynamic Session Keys (Like DSL)
- -Very expensive solution for not being Dynamic Encryption Keys

SECURITY CHECKLIST

- 1. Change default settings on the access point
- 2. Disable SSID broadcast
- 3. Change the default radio channel
- 4. Isolate APs into an untrusted zone
- 5. Enable some form of encryption
- 6. Limit RF coverage
- 7. Restrict traffic to specific applications

SECURITY CHECKLIST (continued)

- 8. Local MAC access
- 9. Disable DHCP if only a few, no roaming users
- 10. Maximize IP address assignments if using DHCP
- 11. Centralize authentication services
- 12. Perform regular scans and audits
- 13. Restrict use to authorize personnel
- 14. Integrate user policies
- 15. Implement VPNs to secure trusted WLANs

SITE SURVEY

- Preliminary investigation
 - -Floor plans or blueprints
- Site analysis to determine best installation practices
 - -Document the site characteristics
 - -Discover RF interferences
 - Define equipment quantity and placement
 - -Define infrastructure needs
- Interview network administrator
 - -Identify the purpose of the WLAN
 - -Determine business requirements
- Test and revise draft network design

Floor Plan

IDENTIFY BUSINESS REQUIREMENTS

- What is the coverage –indoor and/or outdoor requirements
- What are throughput and capacity expectations and/or requirements
- Identify number of current wireless users

 Anticipated growth
- What is user mobility, roaming characteristics
 Continuous connectivity or automatic reconfiguration
- What are the security needs
- What are the IP network requirements
 - -Is address translation an option
 - -VPN requirements
- Identify application requirements
 - -Bandwidth or delay sensitive applications
 - -Real-time applications

ARCHITECT A DESIGN

- Describe the interconnection of wireless and related wired components
- Identify RF coverage areas
- Identify physical connections required for equipment
- Outline the project plan for deployment
- Administrative characteristics including naming and addressing
- Identify maintenance requirements
- Identify user station and/or software requirements

DESIGN CONSIDERATIONS - RANGE

- Inversely proportional to data rate
- Affected by noise and interference
- Obstructions affect range or shape of coverage area

DESIGN CONSIDERATIONS -ANTENNAS

- Antennas affect the shape of the coverage area
 - Better manage coverage around obstacles
 - To isolate adjacent coverage areas such as outdoor access
- May boost the signal strength increasing data rate and range
- Can be used to correct RF signaling impairments such as multipath and reflection

DESIGN CONSIDERATIONS - CHANNEL ALLOCATION

84

Santarde

Cisco | Networking Academy[®] Mind Wide Open[™]

MUCHAS GRACIAS

CONSTRUIMOS FUTURO

