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Abstract
An algorithm is presented to determine the Cole–Cole parameters of electrical
impedivity using only measurements of its real part. The algorithm is based
on two multi-fold direct inversion methods for the Cole–Cole and Debye
equations, respectively, and a genetic algorithm for the optimization of the
mean square error between experimental and calculated data. The algorithm
has been developed to obtain the Cole–Cole parameters from experimental data,
which were used to screen cervical intra-epithelial neoplasia. The proposed
algorithm was compared with different numerical integrations of the Kramers–
Kronig relation and the result shows that this algorithm is the best. A high
immunity to noise was obtained.

Keywords: bioelectrical impedance analysis, Cole–Cole model, neoplasical
screening, geophysics and material science, Cole–Cole fitting

1. Introduction

The impedivity is the complex electrical resistivity as dependent on the frequency. Some
researchers call it electrical impedance spectrum, but this name does not consider its unit,
ohm meter (electrical resistivity units). This reason suggests the use of the term impedivity,
proposed by Brown et al, to reference the complex electrical resistivity.

There has been considerable interest in the use of electrical resistivity spectra for many
applications, e.g. neoplasical screening, electrical bioimpedance and geophysics (Brown et al
2000, Xiang et al 2003). The spectral-induced polarization (SIP) technique is a kind of
electromagnetic exploration method in a frequency domain. This method is widely used in
environmental studies and engineering exploration methods, geophysics, oil, gas and coal
explorations (Cao et al 2005). In the theory of the interpretation of these spectra, the Cole–
Cole model is a basic expression. There are available techniques for measuring the real part,
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the amplitude, the phase and the imaginary part of impedivity (Xiang et al 2003, Ackmann
and Seitz 1984), but some research groups (Brown et al 2000, Miranda et al 2007) only
measure the real part of the spectrum, since experimental errors are less when only recording
this one. A new algorithm is presented to search the imaginary part of the impedivity from
the real part. This algorithm enables the fitted experimental data to determine the important
Cole–Cole parameters using only the real part of the impedivity.

2. Mathematical model to analyze the impedivity spectrum

The use of models such as Cole–Cole for characterizing experimental data is common, but
the algorithms for inverting the equations require both the real and imaginary parts of the
impedance, e.g. Xiang et al (2003) and Ward et al (2006).

The complex electrical impedivity expression of the Cole–Cole equation (Cole 1940, Cole
and Cole 1941) is written as

ρ = ρ∞ +
ρo − ρ∞

1 + (jωτ)1−α
= ρo

{
1 − m

[
1 − 1

1 + (jωτ)c

]}
, and

{
α = 1 − c

ρ∞ = ρo(1 − m),
(1)

where ρ∞ is the high-frequency resistivity, ρo is the low-frequency resistivity, τ is the central
relaxation time, α or c is the dispersion parameter, and m is the polarizability.

Kramers and Kronig demonstrated that the imaginary part of the electrical permittivity is
absolutely defined if the real part is known (Xiang et al 2001, Kronig 1926, Kramers 1927), but
it is necessary to know the real part of the spectrum for all frequencies. The Kramers–Kronig
relations could be extended to the complex electrical resistivity (or electrical impedivity). The
numerical integration for the Kramers–Kronig relations is shown for two different methods in
the numeral six. To show the advantage of the proposed method in this paper, the result of the
three different methods is compared in the numeral seven.

A new technique is proposed to obtain the Cole–Cole parameters from the real part of an
electrical impedivity spectrum, with access to finite data. The basic procedure is described as
follows: first, a direct inversion method is used to obtain the parameters of the Debye models
and to calculate an approximation for the imaginary part of the spectrum. Second, Xiang’s
algorithm (Xiang et al 2003, 2001) is used to invert the electrical resistivity spectrum formed
from experimental data and the imaginary part obtained in the first step. Third, the Cole–Cole
parameters obtained with the Xiang algorithm and the relaxation time of the Debye model are
used to calculate the electrical impedivity spectrum. Finally, a genetic algorithm is used to
minimize the root mean square error between experimental data and the Cole–Cole equation.

3. The direct inversion of the Debye model

The Debye model is inverted (equation (1) with α = 0, or c = 1). From the experimental
data, ρ0,m and τ are estimated. Assuming the data as {(ωk, Rk)|k = 1, 2, . . . , N + 1}, where
Rk = Re{ρ(jωk)}, k = 1, 2, . . . , N + 1, the Debye model gives the relations

Rk = ρ∞ +
ρ0 − ρ∞

1 + (ωkτ)2 (2)

Rk − ρ0 = (−Rkω
2
k + ρ∞ω2

k

)
τ 2. (3)

Estimating Rk−Rk+1
Rk−1−Rk

, x = ρ∞, and using (2) and (3), it can be obtained as

Rk − Rk+1

Rk−1 − Rk

= −Rkω
2
k + xω2

k + Rk+1ω
2
k+1 − xω2

k+1

−Rk−1ω
2
k−1 + xω2

k−1 + Rkω
2
k − xω2

k

. (4)
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By reordering the terms it is possible to write (4) as A∞kx = B∞k , where

A∞k = (Rk+1 − Rk) ω2
k−1 − (Rk+1 − Rk−1) ω2

k − (Rk − Rk−1) ω2
k+1

B∞k = (Rk+1 − Rk)Rk−1ω
2
k−1 − (Rk+1 − Rk−1) Rkω

2
k − (Rk − Rk−1) Rk+1ω

2
k+1.

(5)

Then, using the least-square approximation to minimize the mean quadratic error, sx =
1

N+1

∑
k(A∞kx − B∞k)

2, it is obtained as

ρ∞ =
∑N

k=1 A∞kB∞k∑N
k=1 A2

∞k

. (6)

To find ρ0 it is necessary to resolve Rk−Rk+1
ρ0−Rk

, using (2) and (3) and y = ρ0, and the least-
square approximation is calculated in order to minimize the mean quadratic error sy =

1
N+1

∑
k (A0ky − B0k)

2:

A0k = (Rk+1 − R∞)ω2
k+1 − (Rk − R∞)ω2

k

B0k = (Rk+1 − R∞)Rkω
2
k+1 − (Rk − R∞)Rk+1ω

2
k

(7)

ρ0 =
∑N

k=1 A0kB0k∑N
k=1 A2

0k

. (8)

Equations (3) and (6) allow us to obtain the parameter τ . First, z = τ 2, Jk = ρ∞ω2
k − Rkω

2
k

and Lk = Rk − ρ0, and second, Jkz = Lk . Using the least-square approximation to minimize
the mean quadratic error sz = 1

N+1

∑
k(Jkz − Lk)

2 it is found that

τ =
√√√√∑N+1

k=1 JkLk∑N+1
k=1 J 2

k

. (9)

4. Xiang inversion and the optimization problem

Once the Debye parameters are obtained, an approximation for the imaginary part of ρ for
each frequency can be calculated using

Ik = − (ρ0 − ρ∞) ωkτ

1 + ω2
kτ

2
. (10)

The impedivity is defined as ρk = Rk + jIk and the Cole–Cole parameters: ρ
(0)
0 ,m(0), α(0) and

τ (0) are estimated using the Xiang (Xiang et al 2001) inversion technique.
In order to obtain more accurate values for the parameters from the Cole–Cole equation

when fitted to the experimental data, an optimization of the root mean square error (12) can
be used through step (11). To implement the optimization of the root mean square error (12),
it is necessary to use a non-classical technique, a genetic algorithm, because equation (12) has
many local minima and only one global minimum. The minimization of (12) through the path
(11) is proposed:

τ (k+1) = p
(k)
1 τ (0) + q

(k)
1 ρ

(k+1)
0 = p

(k)
2 ρ

(0)
0 + q

(k)
2

ρ
(k+1)
∞ = p

(k)
3 ρ

(0)
∞ + q

(k)
3 α(k+1) = p

(k)
4 α(0) + q

(k)
4

(11)

Err =
√

1

N + 1

∑
k

(Rk − Re{ρk}Calculated)
2, (12)
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Figure 1. Two examples of the measurements and fitting of real part of electrical impedivity. This
figure shows data for (a) normal cervical tissue and (b) invasive cervical carcinoma.

where p
(k)
1 , p

(k)
2 , p

(k)
3 ,p

(k)
4 , q

(k)
1 , q

(k)
2 , q

(k)
3 and q

(k)
4 , k = 1, 2, . . . are genetic algorithm

searching parameters. The parameter τ (0) used in equation (11) is calculated with the Debye
direct inversion, equation (9), the other parameters are obtained by the Xiang inversion method.

5. Algorithm and numerical examples

The parameters of the Cole–Cole model and the imaginary part of the impedance may be
investigated based on the methods of the previous sections. The algorithm is described
as follows: first, equations (5)–(9) are used to get the Debye parameters ρ0, ρ∞ and τ ;
second, equation (10) is used to calculate the first approximation of the imaginary part of
impedance; third, the real part of impedance (data) and the first approximation of the imaginary
part (calculated in the second step) are used to approximate the Cole–Cole parameters
α(0), ρ

(0)
0 , ρ

(0)
∞ and τ (0)by the Xiang algorithm (Xiang et al 2001). The final step is to search

the Cole–Cole parameters α, ρ0, ρ∞ and τ with a genetic algorithm to minimize the root mean
square error (12) through the steps shown in (11).

The above algorithm was implemented as a Matlab function. Here four examples of the
use of these algorithms are presented to show the utility and accuracy of this method.

5.1. Medical application of the impedivity in cervical tissue

Many measurements of the impedivity were made in patients in the hospital of the Santander
University. Figure 1 shows some typical results of the adjusted electrical resistivity real part
spectrum of cervical tissue; the four important calculated parameters are shown inside the
figure. The measurements were made using the MARK III system of Sheffield University and
a tetrapolar probe (Miranda et al 2007). As shown in figure 1, the Cole–Cole parameters are
significantly different for the normal cervical tissue and for an invasive cervical carcinoma.

5.2. Bioimpedance of neoplasical cervical tissue

The impedivity is used to investigate different properties of tissues, such as neoplasical tissues.
In the neoplasical tissue studies, the impedivity was measured in the β dispersion zone
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(103 Hz < f < 106 Hz) (Brown et al 2000, Schwan 1994). Using a given set of Cole–Cole
parameters for neoplasical cervical tissue obtained from Miranda et al (2007),

τ = 1.8 × 10−6 (s), ρ0 = 3.24 (� m), ρ∞ = 1.34 (� m) ∧ α = 0.31.

The real part of the impedivity is calculated and the proposed algorithm is used to obtain the
imaginary part of the impedivity and the Cole–Cole parameters. Before the implementation
of the algorithm it is necessary to calculate the real part of the impedivity using (2), some
frequency values and the given Cole–Cole parameters:

ω = 2π{100, 464.16, 2154.40, 104, 46 416, 215 440, 106} (rad s−1)

R = {3.2317, 3.2155, 3.166, 3.0082, 2.5683, 1.9164, 1.5329} (� m)

The implementation of the algorithm is presented as follows. First, the Debye parameters are
calculated using equations (5)–(9):

τ = 9.9814 × 10−7 (s)
ρ0 = 2.6669 (� m)

ρ∞ = 1.5042 (� m).

Second, the first approximation of the imaginary part of the impedivity is calculated
using (10):

I = {−0.000 729,−0.003 385,−0.015 707,−0.072 632,−0.312 02,

− 0.555 98,−0.1808} (� m).

Third, taking R, I and the Xiang algorithm, the first approximation of the Cole–Cole parameters
is calculated:

τ (0) = 1.8299 × 10−48 (s)

ρ
(0)
0 = 3.2408 (� m)

ρ
(0)
∞ = 1.2386 (� m)

α(0) = 0.320 36.

Fourth, a genetic algorithm is defined with the following parameters: generations = 100,
fitness limit = 10−4, stall genetic limit = infinite, stall time limit = infinite, crossover
fraction = 0.6, elite count = 20, migration direction = both, migration fraction = 0.4,
migration interval = 5, population size = 5000 and the population initial range = [0, 1]. The
genetic algorithm minimized the error (12) through step (11):

τ (0) = 1.7866 × 10−6 (s)

ρ
(0)
0 = 3.2406 (� m)

ρ
(0)
∞ = 1.3346 (� m)

α(0) = 0.3124.

Fifth, equation (1) is used to get the imaginary part of the impedivity. Figure 2 shows the
impedivity:

I = −{0.0154, 0.0437, 0.1200, 0.2968, 0.5353, 0.5049, 0.2601} (� m).

The above algorithm may use different sets of impedivity data and different values for
the generations of a genetic algorithm. Table 1 presents the results using different sets of
impedivity data and different values of generations.
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Figure 2. (a) Real and (b) imaginary parts of the impedivity of cervical neoplasical tissue.

Table 1. Results for bioimpedance of cervical neoplasical tissue.

The number of
spectral data Generations τ (µs) ρ0 (� m) ρ∞ (� m) α

5 10 1.84 3.2330 1.3408 0.31009
5 100 1.80 3.2397 1.3415 0.30932
5 880 1.80 3.2399 1.3405 0.30972
7 10 1.76 3.2261 1.3432 0.30219
7 100 1.80 3.2405 1.3378 0.31196
7 880 1.80 3.2398 1.3406 0.30967

10 10 1.43 3.2249 1.2446 0.32632
10 100 1.78 3.2418 1.3299 0.31412

5.3. Estimation of Cole–Cole parameters and comparison with Jaggar and Xiang
inversion models

Table 2 presents a set of impedivity data obtained from Jaggar and Fell (1988). From
this table the Cole–Cole parameters can be calculated. To estimate the Cole–Cole
parameters, it is necessary to take the real part of the impedivity (the fourth column of
table 2). The implementation of the algorithm for a set of nine data of the real part impedivity
is presented as follows:

ω = 2π{0.022, 0.100, 0.464, 2.154, 10.00, 46.42, 215.40, 1000, 4642} (rad s−1)

Re{ρ (jω)} = {21.990, 21.980, 21.960, 21.910, 21.717, 21.229, 20.345,

19.601, 19.270} (� m).

First, the Debye parameters are calculated using equations (5)–(9):

τ = 2.56019 × 10−4 (s),
ρ0 = 20.503 25 (� m), ρ∞ = 19.248 09 (� m).

Second, the first approximation of the imaginary part of the impedivity is calculated
using (10):

I =
{−0.000 043,−0.000 202,−0.000 937,−0.004 349,−0.020 186,

−0.093 206,−0.388 290,−0.562 790,−0.165 130

}
(� m).
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Table 2. Field data from Jaggar and Fell (1988).

Frequency Amplitude Phase Real part Imaginary part
(Hz) (� m) (mrad) (� m) (� m)

1.000 × 10−2 2.200 × 101 0.000 × 100 2.200 × 101 0.000 × 100

2.154 × 10−2 2.199 × 101 0.000 × 100 2.199 × 101 0.000 × 100

4.642 × 10−2 2.197 × 101 0.000 × 100 2.197 × 101 0.000 × 100

1.000 × 10−1 2.198 × 101 0.000 × 100 2.198 × 101 0.000 × 100

2.150 × 10−1 2.197 × 101 0.000 × 100 2.197 × 101 0.000 × 100

4.640 × 10−1 2.196 × 101 −1.52 × 100 2.196 × 101 −3.338 × 10−2

1.000 × 100 2.195 × 101 −3.36 × 100 2.195 × 101 −7.375 × 10−2

2.154 × 100 2.191 × 101 −6.11 × 100 2.191 × 101 −1.339 × 10−1

4.642 × 100 2.184 × 101 −1.049 × 101 2.184 × 101 −2.291 × 10−1

1.000 × 101 2.172 × 101 −1.637 × 101 2.172 × 101 −3.555 × 10−1

2.154 × 101 2.154 × 101 −2.483 × 101 2.153 × 101 −5.348 × 10−1

4.642 × 101 2.124 × 101 −3.248 × 101 2.123 × 101 −6.898 × 10−1

1.000 × 102 2.083 × 101 −4.014 × 101 2.081 × 101 −8.359 × 10−1

2.154 × 102 2.036 × 101 −3.856 × 101 2.035 × 101 −7.849 × 10−1

4.642 × 102 1.996 × 101 −3.319 × 101 1.995 × 101 −6.624 × 10−1

1.000 × 103 1.961 × 101 −2.953 × 101 1.960 × 101 −5.790 × 10−1

2.154 × 103 1.940 × 101 −1.746 × 101 1.940 × 101 −3.387 × 10−1

4.642 × 103 1.927 × 101 −1.980 × 100 1.927 × 101 −3.816 × 10−2

1.000 × 104 1.884 × 101 −7.930 × 100 1.884 × 101 −1.494 × 10−1

Third, taking R, I and the Xiang algorithm, the first approximation of the Cole–Cole parameters
is calculated:

τ (0) = 9.008 22 × 10−46 (s)

ρ
(0)
0 = 21.9973 (� m)

ρ
(0)
∞ = 18.8264 (� m)

α(0) = 0.451 89.

Fourth, a genetic algorithm is defined with the following parameters: generations = 100,
fitness limit = 10−4, stall genetic limit = infinite, stall time limit = infinite, crossover
fraction = 0.6, elite count = 20, migration direction = both, migration fraction = 0.4,
migration interval = 5, population size = 5000 and the population initial range = [0, 1]. The
genetic algorithm minimized the error (12) through step (11).

τ (0) = 9.8542 × 10−4 (s)

ρ
(0)
0 = 22.0053 (� m)

ρ
(0)
∞ = 19.0548 (� m)

α(0) = 0.3659.

Fifth, equation (1) is used to get the imaginary part of the impedivity. Figure 3 shows the
impedivity.

I =
{

−0.008 615,−0.022 661,−0.058 967,−0.149 190,−0.349 070,

−0.661 110,−0.793 460,−0.540 750,−0.257 530

}
(� m)

The above algorithm may use different sets of impedivity data. Table 3 presents the results
using different sets of impedivity data and compares the three models: Jaggar–Fell (1988),
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Figure 3. (a) Real and (b) imaginary parts of the impedivity using inversion for N = 6.

Table 3. Estimated parameters and a comparison of model by overall error.

Model τ (s) ρ0 (� m) m c Overall error

Jaggar-Fell, N = 19a 1.1000 × 10−3 21.9 0.1300 0.7000 0.3164
Xiang inversion N = 13a 1.0000 × 10−3 21.994 0.1343 0.6702 0.1684
Xiang inversion N = 15a 1.2000 × 10−3 21.9902 0.1226 0.6824 0.3595
Xiang inversion N = 17a 8.1710 × 10−4 21.9907 0.1373 0.6502 0.1930
Miranda inversion N = 4 1.7835 × 10−3 21.975 0.1193 0.8604 0.9420
Miranda inversion N = 5 1.0317 × 10−3 21.984 0.1300 0.6701 0.1932
Miranda inversion N = 6 9.8101 × 10−4 21.999 0.1338 0.6431 0.1725
Miranda inversion N = 7 1.0662 × 10−3 21.988 0.1303 0.6752 0.1882
Miranda inversion N = 9 9.8542 × 10−4 22.005 0.1341 0.6340 0.1790
Miranda inversion N = 10 9.9264 × 10−4 21.994 0.1321 0.6439 0.1899
Miranda inversion N = 11 9.8678 × 10−4 21.997 0.1327 0.6441 0.1842
Miranda inversion N = 13 9.8103 × 10−4 21.998 0.1330 0.6427 0.1821
Miranda inversion N = 15 9.9497 × 10−4 21.997 0.1327 0.6434 0.1827
Miranda inversion N = 16 9.9953 × 10−4 22.002 0.1329 0.6428 0.1834
Miranda inversion N = 17 9.9008 × 10−4 22.001 0.1330 0.6421 0.1832
Miranda inversion N = 18 1.0261 × 10−3 21.996 0.1314 0.6541 0.1894

a Data from Xiang et al (2003).

Xiang and the proposed model. The overall error was calculated as
∑

k |Rk − ρ(jωk)|2. The
values of Xiang inversion and Jaggar–Fell were obtained from Xiang et al (2001). Table 3
shows a low variability of the Cole–Cole parameter and an overall error with respect to the
data set number for the Miranda inversion.

5.4. Bioimpedance of normal cervical tissue

Using a given set of Cole–Cole parameters for normal cervical tissue obtained from Miranda
et al (2007),

τ = 5.4 × 10−6 (s), ρ0 = 14.25 (� m), ρ∞ = 1.98 (� m) and α = 0.14.

The real part of the impedivity is calculated and the proposed algorithm is used to obtain the
imaginary part of the impedivity and the Cole–Cole parameters.
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Figure 4. (a) Real and (b) imaginary parts of the impedivity for bioimpedance of normal cervical
tissue.

Table 4. Results for bioimpedance of normal cervical tissue.

Number of spectral data Generations τ (µs) r0 (� m) ρ∞ (� m) α

5 10 5.46 14.268 1.9927 0.14109
5 100 5.40 14.25 1.9809 0.13993
5 440 5.40 14.25 1.9799 0.14002
7 10 5.43 14.22 2.0074 0.13709
7 100 5.40 14.249 1.9803 0.13988
7 440 5.40 14.25 1.98 0.13998

10 10 5.31 14.207 1.9314 0.13446
10 100 5.40 14.251 1.979 0.14022

The sequence of steps is similar to that of section 5.2. Figure 4 presents the results to
seven impedivity data, and table 4 presents the results for different values of impedivity and
different values of generations:

ω = 2π{100, 464.16, 2154.40, 104, 46 416, 215 440, 106} (rad s−1)

R = {2.9578, 3.714, 4.9356, 6.678, 8.7289, 10.641, 12.081} (� m)

I = {0.630 25, 1.0202, 1.4974, 1.894, 1.9753, 1.683, 1.2107} (� m).

6. Numerical integration for the Kramers–Kronig relation

A numerical integration for the Kramers–Kronig relation was implemented in the following
way. Assuming that N + 1 are data written as {(ωk, Rk) | k = 1, 2, . . . , N + 1}, where
Rk = Re{ρ(jωk)}, k = 1, 2, . . . , N + 1, then the imaginary part of the impedivity should be
obtained by the Kramers–Kronig relation as

Ik = Im{ρ(jωk)} = 2ωk

π

∫ ∞

0

Re{ρ(jv)} − ρ∞
ω2

k − v2
dv. (13)

Four aspects should be considered before the numerical integration of the Kramers–Kronig
relation could be done. First, the singularity around ωk; second, the frequency obtained



678 D A Miranda and S A López Rivera

Re {ρ (jω∞)} = ρ∞; third, the spectral data to low frequencies; and finally, the number of
spectral data.

The singularity could be avoided by rewriting the singularity by partial fractions as
follows:

Ik = 2

π

∫ ∞

0
〈Re{ρ(jv)} − ρ∞〉

(
1

ω2
k − v2

ωk

)
dv

= 2

π

∫ ∞

0

[
Re{ρ(jv)} − ρ∞

2

(
1

ωk − v
+

1

ωk + v

)]
dv

Ik = 1

π

∫ ∞

0

Re{ρ(jv)} − ρ∞
ωk + v

dv

+
1

π
lim

δω→0

{∫ ωk−δω

0

Re{ρ(jv)} − ρ∞
ωk − v

dv +
∫ ∞

ωk+δω

Re{ρ(jv)} − ρ∞
ωk − v

dv

}
(14)

Let ωk − δω = ωk−1 and ωk + δω = ωk+1 when the number of points is very big. Then,

Ik
∼= 1

π

∫ ∞

0

Re{ρ(jv)} − ρ∞
ωk + v

dv

+
1

π

{∫ ωk−1

0

Re{ρ(jv)} − ρ∞
ωk − v

dv +
∫ ∞

ωk+1

Re{ρ(jv)} − ρ∞
ωk − v

dv

}
. (15)

To evaluate the integration between zero and infinity a definition of extra spectral data could
be useful: let Re{ρ(jv)} = RN+1 for all v � ωN+1, and Re{ρ(jv)} = R1 for all values between
zero and ω1. With extra spectral data (15) should be written as follows:

Ik
∼= R1 − RN+1

π

(∫ ω1

0

1

ωk + v
dv +

∫ ω1

0

1

ωk − v
dv

)
+

1

π

∫ ωN+1

ω1

Re{ρ(jv)} − RN+1

ωk + v
dv

+
1

π

{∫ ωk−1

ω1

Re{ρ(jv)} − RN+1

ωk − v
dv +

∫ ωN+1

ωk+1

Re{ρ(jv)} − RN+1

ωk − v
dv

}
. (16)

But
∫ ω1

0
1

ωk+v
dv +

∫ ω1

0
1

ωk−v
dv = 2ωk

∫ ω1

0
1

ω2
k−v2 dv = ln

∣∣ωk−ω1
ωk+ω1

∣∣, then

Ik
∼= (R1 − RN+1)

π
ln

∣∣∣∣ωk − ω1

ωk + ω1

∣∣∣∣ +
1

π

∫ ωN+1

ω1

Re{ρ(jv)} − RN+1

ωk + v
dv

+
1

π

{∫ ωk−1

ω1

Re{ρ(jv)} − RN+1

ωk − v
dv +

∫ ωN+1

ωk+1

Re{ρ(jv)} − RN+1

ωk − v
dv

}
. (17)

Finally, the numerical integration is possible if Re{ρ(jv)} is known to all v, but few spectral
data are available. To avoid this difficulty many ways are possible but Simpson numerical
integration and Maclaurin’s formula give the best result.

First, the Simpson numerical integration is studied, and second, the trapezium integration
and Maclaurin’s formula.
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6.1. Simpson numerical integration

Two numerical integrations required are
∫ ωl+2

ωl

Re{ρ(jv)}−RN+1

ωk−v
dv and

∫ ωN+1

ω1

Re{ρ(jv)}−RN+1

ωk+v
dv.

Simpson numerical integration is as follows: let f (x) be a real function defined on interval
(x1, x3), then the Simpson rule is∫ x3

x1

f (x) dx = h

3
[f (x1) + 4f (x2) + f (x3)] + O(ξ),

where h = x3−x1
2 and O(ξ) = − h5

90f (4)(ξ) is the error for numerical Simpson integration.

Let f (v;ωk) = Re{ρ(jv)}−RN+1

ωk−v
, then

∫ ωl+2

ωl

Re{ρ(jv)} − RN+1

ωk − v
dv ∼= ωl+2 − ωl

6
[f (ωl;ωk) + 4f (ωl+1;ωk) + f (ωl+2;ωk)]

Furthermore, the second integral should be evaluated by the successive application of Simpson.
Let g (v;ωk) = Re{ρ(jv)}−RN+1

ωk+v
, then

∫ ωN+1

ω1

Re{ρ(jv)} − RN+1

ωk + v
dv ∼=

( N+1
3 )∑

l=1

ω3l − ω3l−2

6
[g(ω3l−2;ωk) + 4g(ω3l−1;ωk) + g(ω3l;ωk)].

The Kramers–Kronig numerical integration gives the imaginary part of impedivity obtained
by

Ik
∼= (R1 − RN+1)

π
ln

∣∣∣∣ωk − ω1

ωk + ω1

∣∣∣∣
+

1

π

(N+1
3 )∑

l=1

ω3l − ω3l−2

6
[g (ω3l−2;ωk) + 4g (ω3l−1;ωk) + g (ω3l;ωk)]

+
1

π

( k−1
3 )∑

l=1

ω3l − ω3l−2

6
[f (ω3l−2;ωk) + 4f (ω3l−1;ωk) + f (ω3l;ωk)]

+
1

π

(N+1
3 )∑

l=k+1

ω3l − ω3l−2

6
[f (ω3l−2;ωk) + 4f (ω3l−1;ωk) + f (ω3l;ωk)], (18)

where f (v;ωk) = Re{ρ(jv)}−RN+1

ωk−v
and g (v;ωk) = Re{ρ(jv)}−RN+1

ωk+v
.

6.2. Trapezium numerical integration

A trapezium numerical integration should be implemented based on Maclaurin’s formula
(Ohta and Ishida 1988).

Trapezium numerical integration is as follows: let f (x) be a real function defined on the
interval (x1, x2), then the Simpson rule is∫ x2

x1

f (x) dx = h

2
[f (x1) + f (x2)] + O(ξ),

where, h = x2−x1
2 and O(ξ) = − h3

12f (3)(ξ) is the error for the numerical trapezium integration.
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Figure 5. The imaginary part of impedivity obtained by (a) numerical integration for the Kramers–
Kronig relation by Simpson’s rule, (b) numerical integration for the Kramers–Kronig relation by
trapezium formula (based on Maclaurin’s formula) and (c) proposed algorithm.

Then, the Kramers–Kronig numerical integration, the imaginary part of the impedivity,
should be obtained by

Ik
∼= (R1 − RN+1)

π
ln

∣∣∣∣ωk − ω1

ωk + ω1

∣∣∣∣ +
1

π

(N+1
2 )∑

l=1

ω2l − ω2l−1

4
[g (ω2l−1;ωk) + g (ω2l;ωk)]

+
1

π

( k−1
2 )∑

l=1

ω2l − ω2l−1

4
[f (ω2l−1;ωk) + f (ω2l;ωk)]

+
1

π

(N+1
2 )∑

l=k+1

ω2l − ω2l−1

4
[f (ω2l−1;ωk) + f (ω2l;ωk)], (19)

where f (v;ωk) = Re{ρ(jv)}−RN+1

ωk−v
and g (v;ωk) = Re{ρ(jv)}−RN+1

ωk+v
.

7. Comparison among numerical integrations for the Kramers–Kronig relation
and the proposed algorithm

To compare different numerical integrations for the Kramers–Kronig relation in the proposed
algorithm, numerical resistivity data are required; in this case, using the Cole–Cole relation.
Various sets of spectral data were obtained using the Cole–Cole relation and experimental
data. The comparison of numerical integration and the proposed algorithm is shown in
table 5 and figure 5.
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Figure 6. Shows the adjustment of data with 30% random additive noise, where (a) is the real part
of the impedivity and (b) the imaginary part of the impedivity.

Table 5. Comparison among numerical integration for the Kramers–Kronig relation and the
proposed algorithm.

Kramers–Kronig Kramers–Kronig
numerical integration numerical integration Proposed
for Simpson’s rule for Maclaurin’s formula algorithm

RMS Elapsed RMS Elapsed RMS Elapsed
Data Spectral errora time errora time errora time
source points (×10−3) (ms) (×10−3) (ms) (×10−3) (s)

Cole–Cole model: 5 12098 31 31588 15 3 4.2
ρ(jω) = 20 + 25 1352 31 1131 16 3 5.0

18
1+ jω

20000π

(� m) 125 224 125 201 31 3 17.5

625 43 2250 45 218 3 60.9
3125 9 56313 14 5156 3 277.5

Jaggar and Fell 19 417 31 343 16 54 9565.7
(1988)

a RMS =
√

1
N+1

∑
k〈Im {ρ(jωk)} − Ik〉2

Table 6. Inversion of data with additive noise.

Real parameters Inversion values

Noise (%) ρ0 (ms) ρ0 (� m) ρ∞ (� m) α ρ0 (ms) ρ0 (� m) ρ∞ (� m) α

0 1 15 3 0.4 0.999 14.995 3.003 0.399
5 1 15 3 0.4 1.003 15.118 2.982 0.408

10 1 15 3 0.4 0.910 15.121 3.042 0.380
30 1 15 3 0.4 1.075 14.786 3.297 0.343

8. Noise immunity

The proposed algorithm yields excellent noise immunity. The experimental data were
simulated with additive random noise up to 30% of the maximum value of the real part
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of the electrical impedivity spectrum. In figure 6 the result of the simulation is shown, where
the star represents the noise data, circles represent the data without noise and the solid line
represents the adjusted curve.

Table 6 presents the results of the noise simulation.

9. Conclusion

A new algorithm is presented to search the imaginary part of the impedivity from the real
part. The algorithm proposed enables data to be fitted to the Cole–Cole equation using only
the real part of the electrical impedivity spectrum, based upon the Xiang inversion technique
and a genetic algorithm optimization. The additive random noise immunity is very high.
Cole–Cole parameters can be obtained with up to 30% of additive noise. The algorithm
converges fast, and it has very good stability and high precision. It gives a good parameter
estimation. The proposed algorithm was compared with different numerical integrations of
the Kramers–Kronig relation and the result shows that this algorithm is the best.

When the α Cole–Cole parameter is zero, the Debye direct inversion may give a good
approximation. However, the use of a genetic algorithm allows a better search of the imaginary
part of the impedivity, the Cole–Cole parameters and also good noise immunity.

The use of only a few spectral data of the real part of the impedivity enables the genetic
algorithm to search a minimum error with few generations and populations, but when a large
amount of data are used, the number of generations and the time of calculation increase.

The theory of the interpretation of biological impedivity may be of intrinsic interest to
electronic engineers and medical physicists. The determination of the Cole–Cole parameters
has been of considerable interest for many applications: neoplasical screening, electrical
bioimpedance, geophysics and material science.

Acknowledgment

The financial support of the ‘Vicerrectorı́a de Investigación y Extensión de la Universidad
Industrial de Santander (VIE-UIS)’, ‘COLCIENCIAS’ and ‘Consejo de Desarrollo Cientı́fico
Humanı́stico y Tecnológico (CDCHT)’ is gratefully acknowledged.

References

Ackmann J and Seitz M 1984 Methods of complex impedance measurements in biologic tissue Crit. Rev. Biomed.
Eng. 11 281–311

Brown B, Tidy J, Boston K, Blackett A, Smallwood R and Sharp F 2000 Relation between tissue structure and
imposed electrical current flow in cervical neoplasia Lancet 355 892–5

Cao Z, Chang Y and Luo Y 2005 Inversion study of spectral induced polarization based on improved genetic algorithm
Progress in Electromagnetic Research Symposium 2005 (Hangzhou, China, 22–26 August 2005)

Cardona M 1969 Modulation Spectroscopy (New York: Academic) pp 9–10
Cole K S 1940 Permeability and impermeability of cell membranes fot ions Cold Spring Harb. Symp. Quant. Biol. 8

110–22
Cole K and Cole R 1941 Dispersion and absorption in dielectrics J. Chem. Phys. 9 341–51
Jaggar S and Fell P 1988 Forward and inverse Cole–Cole modelling in the analysis of frequency domain electrical

impedance data Explor. Geophys. 19 463–70
Kramers H A 1927 La diffusion de la lumiere par les atomes Atti Cong. Intern. Fisica (Transactions of Volta Centenary

Congress) Como vol 2 pp 545–57
Kronig R 1926 On the theory of the dispersion of x-rays J. Opt. Soc. Am. 12 547–57
Miranda D, Barrero J and Hecheverri J 2007 Estudio para la detección temprana del cáncer de cuello uterino

(Colombia: SiC Editorial) pp 96–8

http://dx.doi.org/10.1016/S0140-6736(99)09095-9
http://dx.doi.org/10.1063/1.1750906
http://dx.doi.org/10.1071/EG988463


Determination of Cole–Cole parameters using only the real part of electrical impedivity measurements 683

Ohta K and Ishida H 1988 Comparison among several numerical integration methods for Kramers–Kronig
transformation Appl. Spectrosc. 42 952–7

Schwan H 1994 Electrical properties of tissues and cell suspensions: mechanism and models IEEE Proc. EMBS
pp 70a–71a

Ward L, Essex T and Cornish B 2006 Determination of Cole parameters in multiple frequency bioelectrical impedance
analysis using only the measurement of impedances Phyiol. Meas. 27 839–50

Xiang J, Cheng D, Schlindwein F and Jones N 2003 On the adequacy of identified Cole–Cole models Comput.
Geosci. 29 647–54

Xiang J, Jones N, Cheng D and Schlindwein F 2001 Direct inversion of the apparent complex-resistivity spectrum
Geophysics 66 1399–404

http://dx.doi.org/10.1366/0003702884430380
http://dx.doi.org/10.1088/0967-3334/27/9/007
http://dx.doi.org/10.1016/S0098-3004(03)00032-3
http://dx.doi.org/10.1190/1.1487085

	1. Introduction
	2. Mathematical model to analyze the impedivity spectrum
	3. The direct inversion of the Debye model
	4. Xiang inversion and the optimization problem
	5. Algorithm and numerical examples
	5.1. Medical application of the impedivity in cervical tissue
	5.2. Bioimpedance of neoplasical cervical tissue
	5.3. Estimation of Cole--Cole parameters
	5.4. Bioimpedance of normal cervical tissue

	6. Numerical integration for the Kramers--Kronig relation
	6.1. Simpson numerical integration
	6.2. Trapezium numerical integration

	7. Comparison among numerical integrations
	8. Noise immunity
	9. Conclusion
	Acknowledgment
	References

